If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(25x^2)+3x=0
a = 25; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·25·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*25}=\frac{-6}{50} =-3/25 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*25}=\frac{0}{50} =0 $
| 15=(7^3-2x) | | 6n+4n=20+5n | | 6m²-8m+16m=2 | | 2n+3n=8n-3 | | 6(3x+2)-5(6x-1)=2(x-8)-5(7x-1) | | –2(w+12)=–20 | | X•y=52 | | 4*c=24 | | X=2/4x+56*4/2 | | −2÷5+2÷3w=−32 | | 8x-22=0 | | y=1+0.04/12 | | -4+(2x+5)^2=21 | | -3x+24=13 | | 50^2=4x^2+3x^2 | | 50^2=7x^2 | | (2x+1)/2.5=x | | 8t2-80t-5=0 | | 2500=7x^2 | | 15x+10=11x-6 | | 15x+10=11x+6 | | q/6=14 | | 0.3x+4=-26 | | 5x-15=-5(x-4) | | 0=3x-4=5 | | 2x-10=×^2+25 | | 2x-10=×^2+15 | | 0=1.2x+6 | | 0=-4.9t^2+10t+8 | | V(t)=29900(0.91)^t | | 48x(.)=240 | | 3(2y)+5y=33 |